Staphylococcus aureus IsdG and IsdI, heme-degrading enzymes with structural similarity to monooxygenases.

نویسندگان

  • Ruiying Wu
  • Eric Patrick Skaar
  • Rongguang Zhang
  • Grazyna Joachimiak
  • Piotr Gornicki
  • Olaf Schneewind
  • Andrzej Joachimiak
چکیده

Heme-degrading enzymes are involved in human diseases ranging from stroke, cancer, and multiple sclerosis to infectious diseases such as malaria, diphtheria, and meningitis. All mammalian and microbial enzymes identified to date are members of the heme oxygenase superfamily and assume similar monomeric structures with an all alpha-helical fold. Here we describe the crystal structures of IsdG and IsdI, two heme-degrading enzymes from Staphylococcus aureus. The structures of both enzymes resemble the ferredoxin-like fold and form a beta-barrel at the dimer interface. Two large pockets found on the outside of the barrel contain the putative active sites. Sequence homologs of IsdG and IsdI were identified in multiple Gram-positive pathogens. Substitution of conserved IsdG amino acid residues either reduced or abolished heme degradation, suggesting a common catalytic mechanism. This mechanism of IsdG-mediated heme degradation may be similar to that of the structurally related monooxygenases, enzymes involved in the synthesis of antibiotics in Streptomyces. Our results imply the evolutionary adaptation of microbial enzymes to unique environments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

IsdG and IsdI, heme-degrading enzymes in the cytoplasm of Staphylococcus aureus.

Staphylococcus aureus requires iron for growth and utilizes heme as a source of iron during infection. Staphylococcal surface proteins capture hemoglobin, release heme from hemoglobin and transport this compound across the cell wall envelope and plasma membrane into the bacterial cytoplasm. Here we show that Staphylococcus aureus isdG and isdI encode cytoplasmic proteins with heme binding prope...

متن کامل

Ruffling of metalloporphyrins bound to IsdG and IsdI, two heme-degrading enzymes in Staphylococcus aureus.

IsdG and IsdI are paralogous proteins that are intracellular components of a complex heme uptake system in Staphylococcus aureus. IsdG and IsdI were shown previously to reductively degrade hemin. Crystal structures of the apoproteins show that these proteins belong to a newly identified heme degradation family distinct from canonical eukaryotic and prokaryotic heme oxygenases. Here we report th...

متن کامل

Tight binding of heme to Staphylococcus aureus IsdG and IsdI precludes design of a competitive inhibitor.

The micromolar equilibrium constants for heme dissociation from IsdG and IsdI reported in the literature call into question whether these enzymes are actually members of the iron-regulated surface determinant system of Staphylococcus aureus, which harvests heme iron from a host during infection. In order to address this question, the heme dissociation constants for IsdG and IsdI were reevaluate...

متن کامل

A new way to degrade heme: the Mycobacterium tuberculosis enzyme MhuD catalyzes heme degradation without generating CO.

MhuD is an oxygen-dependent heme-degrading enzyme from Mycobacterium tuberculosis with high sequence similarity (∼45%) to Staphylococcus aureus IsdG and IsdI. Spectroscopic and mutagenesis studies indicate that the catalytically active 1:1 heme-MhuD complex has an active site structure similar to those of IsdG and IsdI, including the nonplanarity (ruffling) of the heme group bound to the enzyme...

متن کامل

The hmuQ and hmuD genes from Bradyrhizobium japonicum encode heme-degrading enzymes.

Utilization of heme by bacteria as a nutritional iron source involves the transport of exogenous heme, followed by cleavage of the heme macrocycle to release iron. Bradyrhizobium japonicum can use heme as an iron source, but no heme-degrading oxygenase has been described. Here, bioinformatics analyses of the B. japonicum genome identified two paralogous genes renamed hmuQ (bll7075) and hmuD (bl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 280 4  شماره 

صفحات  -

تاریخ انتشار 2005